Зарядка для шуруповерта своими руками

Индикатор зарядки для шуруповерта 14.4В

зарядка, шуруповерта, рука

Был приобретен китайский шуруповерт SKIL-2007, аккумулятор 14,4в-1,2А/ч, в прин­ципе обычный работать можно, но у него оказалось два недочета. 1-ый. нет регулировки скорости вращения, с этим совладал стремительно, поставил выключатель с регулятором скорости. 2-ое нет индикато­ра окончания зарядки. В комплекте идет два аккумулятора и простейшее зарядное устройство, выполненное в виде 2-ух раз­дельных частей. В маленьком корпусе, кото­рый втыкается в розетку, находится транс­форматор с выпрямителем, выдает на выхо­де 18В 200мА, от него идет провод с разъемом. 2-ая часть. само зарядное устройство с индикаторами, его схема изображена на рис.1.

Зеленоватый светодиод показывает, что устройство включено в сеть. Красноватый указы­вает, что аккумулятор заряжается, он будет пылать до того времени пока аккумулятор подсое­динен к зарядному устройству. По паспорту время заряда 3-5 часов. Потому что по этому зарядному устройству проконтролировать окончание зарядки нереально, решил дополнить своим.

В качестве базы был взят авто­мобильный индикатор напряжения, они и на данный момент имеются в продаже, представляет из себя цилинндрический корпус, который втыкается в прикури­ватель автомобиля, на торце находятся расположенные в ряд три светодиода, по бокам красноватые, посреди зеленоватый.
Вот его схема (рис.2.) и паспортные данные.

Спектры контролируемых напряжений:
— Красноватый светодиод VD3.- 12В
— Зеленоватый светодиод VD4.- от 12,5 до 14,5 В
— Красноватый светодиод VD4.- более 15 В

Зоны совместного свечения:
— Красноватый VD3 и зеленоватый VD4. от 12,0 до 12,5В
— Красноватый VD2 и зеленоватый VD4.- от 14,5 до 15,0В

Эта схема без переделки подойдет для 12В шуруповерта. Не содержит дефицитных деталей и ее просто может собрать начинающий радиолюбитель.

У моего шуруповерта напряжение пол­ностью заряженного аккумулятора стоящего на зарядке составляет 16,5-16,8В, выше не подымется, хоть день будет заряжаться. Переделка авто индикатора заключается в последующем:
корпус разби­рается и выкидывается, остается плата раз­мером 16×38 с 3-мя светодиодами. Стаби­литрон VD1, заменяется на Д814Г, заместо R2 установить переменный резистор на 1Ком.

Настройка:
на вход индикатора под­ключается источник питания с регулируемым напряжением до 20В. Устанавливаем на выходе блока питания напряжение 16,5 В и вращением движка переменного резистора добиваемся, что бы горел только зеленоватый светодиод, сходу как погаснет красноватый VD3 вращение прекращают. На этом настройка закончена.

Вышли такие значения зарядки:
— Красноватый VD3.- до 15 В (аккумулятор разряжен)
— Красноватый VD3 и зеленоватый VD4. 15-16,5В (заряжен на 50-80%)
— Зеленоватый VD3.-16,5. 19,3В (заряжен 100%)
— Красноватый VD2. больше 19,3В (этот индикатор фактически не употребляется).

После заместо переменного резистора установить неизменный, в моем случае вышло R2=470 ом, но можно бросить и подстроечный. Индикатор подключается к штатному зарядному устройству к клеммам (,- АКБ ). В корпусе сверлят три отверстия под светодиоды и вставляют индикатор в корпус зарядного устройства, места там много, и закрепляют его. Все родное остается на собственных местах.

При включении зарядного устройства без аккумулятора зажигается VD2. Вставляем разряженный аккумулятор в зарядное устройство,VD2 угасает, зажигается индикатор VD3, по мере зарядки когда напряжение достигнет 15В начинает разгораться зеленоватый индикатор VD4,a яркость VD3 снижается и в конце концов VD3 красноватый угасает, а зеленоватый VD4 пылает полным накалом зарядку можно считать оконченной.

В итоге этого дополнения к заряд­ному устройству зарядка, заместо 3-5 часов по паспорту, оканчивается еще ранее. В хоть какое время по свечению индикаторов можно найти в какой стадии находится заряжаемый аккумулятор. По методике опции данная схема применима и для других зарядок, на другое напряжение. Для этого АКБ стопроцентно заряжают, как сказано в аннотации 3-5 часов, потом не вынимая аккумулятор из зарядного, изме­ряют напряжение на сто процентов заряженного аккумулятора. Это напряжение устанавли­вают на выходе регулируемого блока пита­ния и подбором стабилитрона VD1 и резис­тора R2 достигают точной работы индика­тора, как было обозначено выше.

Зарядка для шуруповерта

Ранее на страничках веб-сайта Секрет Мастера был показан вариант резвого ремонта аккумулятора шуруповерта. Но вопрос зарядки отремонтированного аккумулятора остался открытым. Применять старую зарядку с каким-то небольшим блоком питания, который не заряжает батарею и за три часа, не хотелось. Кроме того, непонятная индикация окончания зарядки, зависящая от наружной температуры, никак не способствовала правильной зарядке аккумулятора шуруповерта. Вопросы «как зарядить аккумулятор шуруповерта?», «сколько заряжать шуруповерт?», «как правильно заряжать шуруповерт?» были решены просто, быстро и надежно. Конечно это не изобретение, но классический лайфхак. Наверняка такая идея подойдет и для других комплектов зарядных устройств с одинаковыми напряжениями батарей.

Как зарядить шуруповерт

Итак в хозяйстве лежали без дела несколько шуруповертов лишенных исправных аккумуляторов, некоторые послужили донорами запчастей (электродвигатели) для сгоревших шуруповертов или в качестве небольшого привода для раздвижных штор. Среди этого хлама лежало зарядное устройство для шуруповерта DeWALT. Это продвинутое зарядное устройство с часовым временем зарядки и поддержанием аккумулятора в заряженном состоянии. Только вот у шуруповертов DeWALT свой фирменный разъем подключения, несовместимый с другими аккумуляторами. Так как предполагалось использовать устройство по назначению с родными аккумуляторами (уже месяц лежат где-то в посылке на границе :, то принято решение собрать переходник к зарядному устройству для зарядки аккумуляторов 12В Skill и им подобным.

Для конструирования переходника своими руками требуется зарядный стакан от Skill, испорченная батарея от DeWALT, два куска провода длиной по

15 см. Из инструментов нужна крестовая отвертка, паяльник, термопистолет, дрель и нож.

Вскрываем корпус зарядного стакана Skill. отпаиваем проводники от клемм и удаляем всю внутреннюю электронику. Полярность клемм на стакане указана.

Вскрыаем корпус батареии DeWALT. Отпаиваем от провода клемму «» и аккуратно срываем с точечной сварки клемму «-«. Нас интересует только разъем и верхняя крышка. Для памяти пометим на разъеме полярность клемм.

Намечаем своими руками места отверстий в основании стакана для установки крышки DeWALT и пропуска проводов питания.

Отверстия сверлятся дрелью и расширяются — подгоняются по месту лезвием ножа.

Крышка и разъем DeWALT Разметка отверстий Отверстия сверлятся дрелью

Пропускаем проводники скозь отверстие основания стакана и соблюдая полярность припаиваем проводники к клеммам стакана и разъема.

Чтобы разъем DeWALT не проваливался, вставим внутрь объемный имитатор аккумулятора свернутый из плотной бумаги.

Имитатор заглушка из картона Совмещаем крышки Соединяем крышки

Примеряем крышку DeWALT в основане Skill и закрепляем термоклеем. Такой крепеж сохранит крышку неповрежденной.

Прикручиваем нижнюю крышку к стакану. Переходник готов.

Крышки склеены термоклеем Зарядный переходник Комплект для зарядки Skill

Берем зарядное устройство DeWALT, вставляем переходник, в переходник вставляем аккумулятор. Ура! Заряд пошел, о чем свидетельствовало редкое мигание индикатора на блоке зарядки. Смотрите фото и видео.

Зарядка DeWALT Переходник установлен Зарядка батареи Skill

Так с помощью подручного уже неработающего оборудования удалось решить вопрос качественной и правильной зарядки аккумулятора шуруповерта.

�� Зарядное устройство для аккумулятора Li-ion 5S 21В шуруповёрта своими руками

Секрет Мастера надеется, что такой лайфхак, такая идея, помогут кому-нибудь быстро решить вопрос правильной зарядки аккумуляторов шуруповертов.

Подписывайтесь на новости сайта. Обязательно посетите и подпишитесь на видеопортал Sekretmastera

Зарядка литиевых аккумуляторов для шуруповерта своими руками

Чем заряжать, переделанную на Li-Ion батарею шуруповерта. Не все «зарядки» подходят для этого. Для правильного алгоритма заряда Li-Ion аккумуляторов и для увеличения срока их службы штатное зарядное устройство шуруповерта необходимо доработать.Процесс перевода шуруповерта на литий можно посмотреть в этом видео «Высокотоковые аккумуляторы, универсальная BMS в переделке шуруповерта на литий.»

Сейчас решим вопрос с зарядкой.
Плата зарядки с стабилизацией напряжения и ограничения по току.

Литиевые аккумуляторы

Далее купил 10 литиевых аккумуляторов и собрал из них батареи по 2 штуки параллельно, и затем подключил 5 получившихся блоков последовательно. Соединение аккумуляторов между собой производилось пайкой с помощью предварительно залуженных медных пластин. Для пайки нужно одно основное правило — не перегреть АКБ! Поэтому паять нужно мощным паяльником и как можно быстрее за 1-2с. Если сразу не получилось лучше подождать и не кипятить аккумулятор.

Последствия перегрева могут привести к пожару и ожогам. Будьте осторожны!

У кого имеется точечная сварка — проблем с соединением не будет. В результате собралась батарея на напряжение 21 В и емкость 5,2 Ач. Подключение АКБ к плате контроля представлено на рисунке.

Далее все упаковывается в корпус и проверяется под нагрузкой.

В стандартную зарядку я встроил модуль на LM2596. Блок питания должен быть на пару вольт больше, чем напряжение заряженной батареи. Выставил напряжение на холостом ходу 21 В. Затем подключил АКБ и выставил зарядный ток 0,8 А. Почему такой? Потому что нашелся блок питания на 24 В с макс. током 0,8 А. Специально приобретать не стал. Пусть лучше дольше заряжается. Это не производственный, а домашний вариант инструмента.

В процессе зарядке выявился небольшой минус. При достижении у аккумулятора напряжения полного заряда ЗУ должно переходить из фазы CC в фазу СV. То есть сначала АКБ заряжается установленным током (0,8 А в моем случае), и при достижении 21 В напряжение поддерживается на этом уровне, а ток постепенно падает до 0,1Iуст (в моем случае 0,08 А, устанавливается средним потенциометром). На этом процесс зарядки останавливается. На данном модуле об этом сигнализирует средний светодиод, но всего лишь сигнализирует, что аккумулятор готов к работе, но по факту зарядка продолжается, что в принципе не критично. АКБ все равно не перезарядится. А минус состоит в том, что из-за того, что плата контроля имеет свою защиту от перезаряда, она отключает ЗУ не дойдя до фазы CV.

Чтобы это обойти пришлось уменьшить напряжение модуля ЗУ до примерно 20,7-20,8 В. Фаза CV начинается раньше, но в любом случае АКБ заряжается полнее, чем вообще без нее. Если не знать об этом небольшом недостатке, то вы и не заметите разницы в процессе эксплуатации.

Инструкция по настройке ЗУ

Все соответствует корявому описанию)). Работает отлично. Буду использовать для зарядки переделанного шуруповерта. До Самары дошло за 25 дней. Для тех кто не может разобраться в работе светодиодов нашел отличное описание:

Верхний горит пока преобразователь способен отдавать в нагрузку установленный ток (в случае использования как зарядного получается это индикатор фазы СС, как только он погаснет — пошла фаза CV) средний светодиод горит пока ток в нагрузке не опустится до 0.1 установленного, погас — заряд окончен.

Значение 0.1 установлено по умолчанию, при желании корректируется как большую (заряд быстрее, емкость меньше) так и в меньшую сторону (время заряда увеличивается, аккумулятор заряжается полнее) средним потенциометром. Но заряд продолжается и после его выключения, это лишь индикатор, что аккумулятор в принципе заряжен и готов к использованию. Нижний светодиод — просто индикатор работы преобразователя.

READ  УШМ с протяжкой своими руками

charge — этот индикатор горит, пока ток в выходной цепи выше заданного значения. Это значение устанавливается относительно максимального тока. При установке большого максимального тока (единицы ампер) может не получиться установить индикацию на маленький ток (единицы и десятки миллиампер).

Плата балансировки на нужное количество банок и зарядка от ноутбука и все.

Такая же фигня есть, только в самодельном лабораторном блоке стоит. Только регулировки тока и напряжения на картинке местами переставлены

то, что описано ниже, также можно реализовать на лёгких импульсных БП, если важна портативность зарядника:

— берём 3шт мощных импульсных БП на 5в (например, платы от зарядников мабил)

— модифицируем их ООС, чтобы они выдавали 4,2в 1-2А (смотря, какой БП попадётся)

— аналогично нижнему варианту, соединяем их выходА каскадно, чтобы получить 0в, 4.2в, 8.4в, 12.6в

а вааще же, по моему опыту, самой грамотной оказалась зарядка по идеологии «заряжаем каждую банку по-отдельности».

— в корпус батареи шурика было врезано советское 5-контактное гнездо аудио, к нему были подведены напряжения: 0, 4,2в, 8,4в, 12,6в.

— был изготовлен зарядник на базе: трансформатор ТН-50 с 3мя изолированными обмотками

6,3в, к каждой обмотке было добавлено: свой выпрямитель, свой стабилизатор на 4,2в с ограничением тока

— все эти стабилизаторы, будучи изначально изолированными друг от друга, по выходАм были соединены каскадно, для получения сл. напряжений: 0, 4.2в, 4.8в, 12.6в, которые были подведены тоже к 5-контактному советскому гнезду аудио на корпусе зарядника.

— был изготовлен шнур 1:1 с 2мя советскими 5-контактными гнёздами с обоих концов.

Работает оно так: соединяю шнуром зарядник с АКБ. Каждый из 3х стабилизаторов зарядника заряжает свою банку в батарее (точнее, по 2банки в параллелль).

Только так удалось победить разбежку банок в батарее. Балансиры не особо помогали.

вся беда этих простых зарядок, что они измеряют полное напряжение последовательно соединенных аккумов.
это хорошо лишь для идеально одинаковых по свойствам аккумов.
А это почти нереально.
я тоже думал о нескольких гальванически развязанных модулях зарядки каждого элемента.

балансир, конечно, позволяет выровнять напряжение побаночно и не допустить разбежки. Но всё-таки лучше раздельная зарядка.

если уж лезть в ООС на TL431 первичного БП, то туда же надо было и вводить ООС по току. Тогда бы первичный БП реализовывал бы алгоритм «ограничение тока или напряжения, смотря, что раньше наступит», и платка на LM2596 будет нафиг не нужна.

вот примерчик реализации такого апгрейда БП 12в

только балансиры, там описанные, оказались неудачными. Удачнее оказались балансиры, сделанные по схеме TL431 с высокоомным делителем p-n-p транзистор «сверху».

У меня вопрос!: А СУЩЕСТВУЕТ В ПРИРОДЕ? НА АЛИ ТОМ ЖЕ ГОТОВАЯ ПЛАТА ДЛЯ ЛИТИЯ СО ВСЕМ И РЕГУЛИРОВКАМ И БАЛЛАСТАМИ И СТАБИЛИЗАТОРАМИ ЧТОБЫ НЕ ЛОМАТЬ РУКИ И ГОЛОВУ? а? НУ КУПИЛ ВКЛЮЧИЛ И ВСЁ?

Всё есть! Надо уметь искать, задавать целевые запросы! #128523;

удовлетворительные. а что? соберу если есть точно рабочая схема.

Большинству людей, имеющих шуруповерт на Ni-Cd или Ni-Mn, знакома такая ситуация, когда по истечении продолжительного времени аккумуляторы теряют свою емкость. И не только из-за ресурса жизни батареи, но и из-за эффекта памяти. Смысл его в том, что пролежавший долго разряженный аккумулятор запоминает уровень заряда и впоследствии уже не заряжается до своей номинальной емкости. А держать батарею постоянно заряженной вряд-ли кто-то будет. Некоторые пытаются восстанавливать старые аккумуляторы или собирают из двух плохеньких один нормальный.

Я пошел по другому пути. Сейчас достаточно сильно распространены Li-Ion аккумуляторы. Они не имеют такого эффекта памяти и для тех, кто не каждодневно пользуется шуруповертом идеальный вариант для хранения в не полностью заряженном состоянии. Еще один их плюс в том, что они имеют большую емкость по сравнению никелевыми аккумуляторами при тех же размерах. Для сравнения стандартная АБ была на 1,3 Ач, а сделанная своими руками 5,2 Ач. О ней и пойдет дальше речь.

Для начала нужны аккумуляторы. И не простые, а высокотоковые. Они способны отдавать большие токи примерно до 30 А. Все покупки производились на алиэкспресс. Дальше нужна плата контроля АКБ. Она контролирует много параметров, которые представлены в таблице. И также не забываем про плату ЗУ. Выбрал на LM2596. Это действительно хорошее зарядное устройство. Использовал для зарядки сборки из 6 х Li-Ion аккумуляторов (25,2 В; 2800 мА/ч).

Метки: зарядка лития, аккумуляторы шуруповерта, переделка шурупоповерта на литий, электронные поделки

В целом готовое устройство мне понравилось. По сравнению с тем, что было раньше возникает такое чувство, что этот шуруповерт не посадишь. Специально для сайта Радиосхемы — SssaHeKkk.

Обсудить статью ПЕРЕДЕЛКА ШУРУПОВЁРТА НА ЛИТИЕВЫЕ АКБ

В предыдущей статье я рассматривал вопрос о замене никель-кадмиевых (никель-марганцевых) NiСd(NiMn) аккумуляторов шуруповерта на литиевые. Надо рассмотреть несколько правил по зарядке аккумуляторов.

Литий ионные аккумуляторы размера 18650 в основном могут заряжаться до напряжения 4,20В на ячейку с допустимым отклонением не больше 50 мВ потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может составлять 0,1хС до 1хС (здесь С-емкость). Лучше выбрать эти значение по даташиту. Я применил в переделке шуруповерта аккумуляторы марки Samsung INR18650-30Q 3000mAh 15A. Смотрим даташит-ток зарядки.1,5А.

Наиболее правильным будет провести заряд литиевых аккумуляторов в два приема по методике CCCV (ток постоянный, постоянное напряжение).

Первый этап- должен обеспечить постоянный ток заряда. Величина тока равна 0.2-0.5С. Я применил аккумулятор емкостью 3000 мА/ч, значит номинальный ток заряда будет 600-1500мА. После зарядка банки идет на неизменном напряжении, ток постоянно уменьшается.

Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25В. Аккумулятор зарядился если ток уменьшится до 0.05-0.01С. Принимая во внимание вышесказанное используем электронные платы с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на XL4015E1 так, как она более удобна в настройках.

Характеристики XL4015E1.
Максимальный выходной ток до 5 А.
Напряжение на выходе: 0.8 В-30 В.
Напряжение на входе 5 В-32 В.
Плата на LM2596 имеет аналогичные параметры, только ток до 3 А.

-адаптер 22012 В, 3 А.1шт;
-штатное зарядное устройство шуруповерта (или источник питания);
-плата заряда CC/CV на XL4015E1 или на LM2596.1шт;
-соединительные провода.паяльник;
-тестер;
-пластмассовая коробка для плата заряда.1шт;
-минивольтметр.1шт;
-переменный резистор (потенциометр) на 10-20 кОм.1шт;
-разъем питания для аккумуляторного отсека шуруповерта.1шт.

Шаг первый. Сборка ЗУ аккумуляторов шуруповерта на адаптере.

Плату cccv мы уже выбрали выше. В качестве источника питания можно применить любой с такими параметрами-выходное напряжение не ниже 18 В (для схемы 4S),ток 3 А. В первом примере изготовления зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 12 В, 3 А.

Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без перегруза 1,9 А. Также измерил температуру на радиаторе транзистора-40°C. Вполне нормальный режим.

Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.

На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 В (небольшой запас от 16,8 В для падения на плате CC/CV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.

Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 В. Другим подстроечным резистором выставляем ток 1,5 А, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43°C, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.

Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.

Шаг второй. Сборка схемы зарядного устройства аккумуляторов шуруповерта на штатном зарядном.

У меня было штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-марганцевых аккумуляторов. Задача стояла в том чтобы заряжать и никель-марганцевые аккумуляторы и литий-ионные.

Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CC/CV.
Напряжение холостого хода на выходе штатное зарядного было 27 В, это вполне подходит для нашей зарядной платы. Далее все то же как и варианте с адаптером.

Окончание зарядки здесь мы видим по изменению цвета свечения светодиода(переключился с красного на зеленый).

Саму плату CC/CV я поместил в подходящую пластмассовую коробку, выведя провода наружу.

Если у вас штатное зарядное на трансформаторе то можно подключить плату CC/CV после диодного мостика выпрямителя.

Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.

Всем желаю здоровья и успехов в жизни и творчестве!

Виды зарядных устройств

Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

READ  Stihl 180 Плохо Заводится На Горячую

Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

  • никель-кадмиевые (NiCd);
  • никель-металл-гидридные (NiMH);
  • литий-ионные (LiIon).

Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

  • индикацию;
  • быструю зарядку;
  • разный тип защиты.

Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

Изготовление устройства зарядного для шуруповёрта своими руками

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

Схема на двух транзисторах

Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.

Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.

Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.

Использование специализированной микросхемы

Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:

Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.

HL1 служит для индикации питания, а HL2 — для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C — ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)Iзар, где:

  • Uвх – наибольшее напряжение на входе;
  • Uбат – напряжение на аккумулятор;
  • Iзар – зарядный ток.

Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Interskol:

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

Используемая кнопка SK1 работает без фиксации. При её отпускании всё питание поступает через цепочку VD7, VD6 и ограничительное сопротивление R6. И также питание подаётся на светодиод LED1 через резистор R1. Светодиод загорается, сигнализируя, что начат процесс заряда. Время работы микросхемы U1 настроено на один час работы, после чего питание снимается с транзистора Q1 и, соответственно, с реле. Его контактная группа разрывается и ток заряда пропадает. Светодиод LED1 гаснет.

Этот прибор заряда оборудован схемой защиты от перегрева. Реализуется такая защита с помощью датчика температуры — термопара SA1. Если во время процесса температура достигнет значения более 45 градусов Цельсия, то термопара сработает, микросхема получит сигнал и цепь заряда разорвётся. После окончания процесса напряжение на клеммах батареи достигает 16,8 вольт.

Такой способ зарядки не считается интеллектуальным, ЗУ не может определить, в каком состоянии находится батарея. Из-за чего продолжительность работы шуруповёрта от аккумулятора будет уменьшаться в связи с развитием у него эффекта памяти. То есть ёмкость аккумулятора каждый раз после заряда снижается.

Самодельные приборы для заряда

Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Interskol, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.

В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.

Типы применяемых батарей

Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.

Схемы зарядных устройств для шуруповертов

В одних и тех же шуруповертах могут использоваться различные типы аккумуляторов, отличающихся параметрами и техническими характеристиками. В связи с этим, к ним требуются разные зарядные устройства. Поэтому перед тем как приобрести или сделать зарядник для шуруповерта своими руками, нужно определить тип батареи и условия эксплуатации. Кроме того, рекомендуется изучить основные схемы, чаще всего используемые в зарядных устройствах.

Зарядка на микроконтроллере. Размещается в обычном корпусе, оборудована звуковой и световой сигнализацией о начале и окончании заряда. Данная схема обеспечивает корректную зарядку батареи. В начале работы загораются а затем гаснут светодиоды. Индикация сопровождается звуковым сигналом. Таким образом выполняется тестирование работоспособности устройства. После этого светодиод красного цвета начинает равномерно мигать, что указывает на нормальный процесс зарядки.

По достижении аккумулятором полного заряда, красный светодиод перестает мигать, а вместо него загорается зеленый, сопровождающийся звуковым сигналом. Это означает, что зарядка окончена.

Установка уровня напряжения, который должен быть при полной зарядке, осуществляется с помощью переменного резистора. При этом значение входного напряжения равно напряжению полностью заряженной батареи плюс один вольт. В схеме используется любой полевой транзистор, имеющий Р-канал и наиболее подходящий по токовым характеристикам.

Для того чтобы обеспечить зарядку на уровне 14В, напряжение, подаваемое на вход должно составлять не менее 15-16В. Порог срабатывания, отключающий зарядное устройство, устанавливается с помощью переменного резистора на уровне 14,4В. Сам процесс зарядки протекает в виде импульсов, отображаемых на светодиоде. В промежутках между импульсами контролируется напряжение на батарее и по достижении нужного значения происходит подача звукового сигнала совместно с миганием светодиода об окончании зарядки.

READ  Как Работает Шлифовальная Машина Видео

Существуют и другие схемы зарядных устройств. Например, зарядка для дрели-шуруповерта работает с напряжением 18 вольт. При зарядке батареи на 14,4В зарядный ток подбирается с помощью резистора.

Как сделать зарядное для шуруповерта

Все шуруповерты, работающие от аккумуляторов комплектуются зарядными устройствами. Однако некоторые из них очень медленно выполняют зарядку аккумулятора, что при интенсивном использовании инструмента создает определенные неудобства. В этом случае даже два аккумулятора, входящие в комплект, не позволяют настроить нормальный рабочий цикл. Наилучшим выходом из подобной ситуации будет зарядное для шуруповерта, изготовленное своими руками, по наиболее подходящей схеме.

Устройство шуруповерта

Несмотря на разнообразие моделей, общее устройство шуруповертов довольно универсальное, а принцип действия практически одинаковый. Они могут различаться только внешним видом, компоновкой отдельных деталей, наличием или отсутствием дополнительных функций. Питание шуруповертов может быть сетевым от напряжения 220В или аккумуляторным. Общая конструкция шуруповерта включает следующие элементы и составляющие:

  • Корпус. Изготавливается из твердых пластмасс, что способствует облегчению конструкции и снижению себестоимости. В некоторых моделях применяются металлические сплавы, придающие конструкции повышенную прочность. Представляет собой пистолет с удобной рукояткой, при разборке разделяется на две половинки.
  • Патрон. В нем закрепляются насадки, которым затем передается вращательное движение. Обычно используется трехкулачковое, самозажимное и самоцентрирующееся устройство. Внутри имеется шестигранное углубление, куда вставляется хвостовик насадки. Для закрепления в патроне насадки вставляются между кулачками и зажимаются вращением муфты.
  • Электрическая часть. Состоит из малогабаритного электрического двигателя коллекторного типа. В устройствах, работающих от сети используются двухфазные двигатели переменного тока, рассчитанные на 220В. Их запуск осуществляется с помощью пускового конденсатора. В аккумуляторных шуруповертах устанавливаются электродвигатели постоянного тока. Постоянный ток поступает от аккумулятора, выполненного в виде набора элементов, объединенных в общем корпусе. Мощность шуруповерта определяется по выходному напряжению батареи.
  • Элементы цепи. Для включения используется специальная кнопка, расположенная на рукоятке. Обычно кнопочные выключатели работают в паре с регуляторами напряжения. То есть, величина напряжения, подаваемого на двигатель, зависит от усилия, прилагаемого при нажатии кнопки. Здесь же устанавливается и рычаг переключения, обеспечивающий реверс вращения вала за счет изменения полярности электрического сигнала. От кнопки сигнал поступает непосредственно на ротор через коллектор. Электрический контакт обеспечивается графитными щетками определенных размеров.
  • Механические части и детали. Основой конструкции является редуктор планетарного типа, с помощью которого крутящий момент передается от вала к выходному шпинделю. В качестве дополнительных элементов используются водило, кольцевая шестерня и сателлиты. Все детали находятся внутри корпуса и по очереди взаимодействуют друг с другом.

Важной составной частью считается муфта регулировки вращения, устанавливающая определенный крутящий момент. С ее помощью прекращается вращение вала после вкручивания шурупа. Остановка происходит из-за увеличения сопротивления вращению. Данная мера предотвращает срыв резьбовой части шурупа и выход из строя самого шуруповерта.

Зарядка для шуруповерта своими руками

Проблема собственноручного изготовления зарядного устройства возникает не так уж и часто, в связи с большим количеством вариантов, подходящих практически для всех моделей шуруповертов. Просто иногда возникают ситуации, когда зарядка отсутствует, или она неожиданно вышла из строя, а приобрести новую нет возможности. В этом случае можно попытаться самостоятельно изготовить зарядное устройство.

Предварительно следует запастись всеми необходимыми материалами. Потребуется батарея в нерабочем состоянии, стакан от аккумулятора, паяльник, термопистолет, обычная крестовая отвертка, дрель и острый нож со сменными лезвиями. После этого можно приступать к изготовлению зарядного устройства. В первую очередь выполняется вскрытие зарядного стакана, после этого от клемм отпаиваются все проводники. Далее производится удаление внутренней электроники. При выполнении этой операции нужно соблюдать полярность клемм, чтобы в дальнейшем не возникло путаницы и ошибок.

Корпус нерабочей батареи нужно вскрыть и аккуратно отпаять провода от клемм. Для дальнейшей работы потребуется разъем и верхняя крышка. Плюс и минус на клеммах отмечаются карандашом или маркером. В основании зарядного стакана намечаются отверстия, через которые будет крепиться заготовленная крышка и выводы питающих проводов. Проводники аккуратно пропускаются через отверстия с соблюдением полярности, после чего они соединяются с клеммами и разъемами методом пайки.

Далее корпус нужно скрепить специальным термоклеем, крепление нижней крышки к основанию стакана осуществляется с помощью саморезов. Получившуюся конструкцию нужно вставить в аккумулятор и начинать процесс зарядки. Мигающий индикатор будет указывать на правильную сборку устройства. Лишь немногие зарядники укомплектованы так называемыми умными системами, существенно продлевающими срок эксплуатации батареи. Эту проблему может решить зарядное устройство для шуруповерта 18 вольт.

В конструкцию обычной зарядки добавляется система стабилизации напряжения и ограничение заряжающего тока. В итоге получается конструкция никель-кадмиевого аккумулятора, емкость которого составляет 1200 мАч. Зарядка будет выполняться в безопасном режиме, максимальным током не выше 120 мА, но времени для этого будет затрачиваться больше, чем обычно.

Аккумуляторная дрель шуруповерт Makita DF331DWYE

Самодельное зарядное устройство для литий ионных аккумуляторов шуруповерта

В предыдущей статье я рассматривал вопрос о замене никель-кадмиевых (никель-марганцевых) NiСd(NiMn) аккумуляторов шуруповерта на литиевые. Надо рассмотреть несколько правил по зарядке аккумуляторов.

Литий ионные аккумуляторы размера 18650 в основном могут заряжаться до напряжения 4,20В на ячейку с допустимым отклонением не больше 50 мВ потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может составлять 0,1хС до 1хС (здесь С-емкость). Лучше выбрать эти значение по даташиту. Я применил в переделке шуруповерта аккумуляторы марки Samsung INR18650-30Q 3000mAh 15A. Смотрим даташит-ток зарядки.1,5А.

Наиболее правильным будет провести заряд литиевых аккумуляторов в два приема по методике CCCV (ток постоянный, постоянное напряжение).

Первый этап- должен обеспечить постоянный ток заряда. Величина тока равна 0.2-0.5С. Я применил аккумулятор емкостью 3000 мА/ч, значит номинальный ток заряда будет 600-1500мА. После зарядка банки идет на неизменном напряжении, ток постоянно уменьшается.

Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25В. Аккумулятор зарядился если ток уменьшится до 0.05-0.01С. Принимая во внимание вышесказанное используем электронные платы с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на XL4015E1 так, как она более удобна в настройках.

Характеристики XL4015E1.
Максимальный выходной ток до 5 А.
Напряжение на выходе: 0.8 В-30 В.
Напряжение на входе 5 В-32 В.
Плата на LM2596 имеет аналогичные параметры, только ток до 3 А.

-адаптер 220\12 В, 3 А.1шт;
-штатное зарядное устройство шуруповерта (или источник питания);
-плата заряда CC/CV на XL4015E1 или на LM2596.1шт;
-соединительные провода.паяльник;
-тестер;
-пластмассовая коробка для плата заряда.1шт;
-минивольтметр.1шт;
-переменный резистор (потенциометр) на 10-20 кОм.1шт;
-разъем питания для аккумуляторного отсека шуруповерта.1шт.

Шаг первый. Сборка ЗУ аккумуляторов шуруповерта на адаптере.

Плату cccv мы уже выбрали выше. В качестве источника питания можно применить любой с такими параметрами-выходное напряжение не ниже 18 В (для схемы 4S),ток 3 А. В первом примере изготовления зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 12 В, 3 А.

Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без перегруза 1,9 А. Также измерил температуру на радиаторе транзистора-40°C. Вполне нормальный режим.

Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.

На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 В (небольшой запас от 16,8 В для падения на плате CC/CV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.

Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 В. Другим подстроечным резистором выставляем ток 1,5 А, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43°C, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.

Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.

Шаг второй. Сборка схемы зарядного устройства аккумуляторов шуруповерта на штатном зарядном.

У меня было штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-марганцевых аккумуляторов. Задача стояла в том чтобы заряжать и никель-марганцевые аккумуляторы и литий-ионные.

Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CC/CV.
Напряжение холостого хода на выходе штатное зарядного было 27 В, это вполне подходит для нашей зарядной платы. Далее все то же как и варианте с адаптером.

Окончание зарядки здесь мы видим по изменению цвета свечения светодиода(переключился с красного на зеленый).

Саму плату CC/CV я поместил в подходящую пластмассовую коробку, выведя провода наружу.

Если у вас штатное зарядное на трансформаторе то можно подключить плату CC/CV после диодного мостика выпрямителя.

Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.

Как зарядить аккумулятор от шуруповёрта без родного зарядного

Всем желаю здоровья и успехов в жизни и творчестве!

JUSOF.COM 2021